Some New Bennett–Leindler Type Inequalities via Conformable Fractional Nabla Calculus
نویسندگان
چکیده
In this article, we prove several new fractional nabla Bennett–Leindler dynamic inequalities with the help of a simple consequence Keller’s chain rule, integration by parts, mean and Hölder’s inequality for derivative on time scales. As result this, some classical are obtained as special cases, extended our to discrete continuous calculus. addition, when α=1, shall obtain well-known instances from results. Symmetrical properties critical in determining best ways solve inequalities.
منابع مشابه
Some Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملNabla discrete fractional calculus and nabla inequalities
Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .
متن کاملHermite-hadamard Type Inequalities via Conformable Fractional Integrals
In this study, a new identity involving conformable fractional integrals is given. Then, by using this identity, some new Hermite-Hadamard type inequalities for conformable fractional integrals have been developed.
متن کاملOstrowski type inequalities involving conformable fractional integrals
In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.
متن کاملSome New Gronwall-Bellmann Type Discrete Fractional Inequalities Arising in the Theory of Discrete Fractional Calculus
In this paper, we present some new GronwallBellmann type discrete fractional sum inequalities, and based on them present some Volterra-Fredholm type discrete inequalities. These inequalities are of new forms compared with the existing results in the literature, and can be used in the research of boundedness and continuous dependence on the initial value for solutions of fractional difference eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2022
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym14102183